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ABSTRACT 

In Cognitive Radio (CR) networks, reliable spectrum sensing is highly necessary to determine the presence of 
primary user (PU) in order to avoid interference from secondary users (SU).Spectrum sensing allows opportunistic 
secondary (unlicensed) users to access the spectral resources unused by their primary (licensed) owners. It is equally 
important to have trusted spectrum access methods even under low signal to noise ratio environments. To solve this 
issue, Locally Optimum (LO) Detection of random signals under weakly correlated noise model over fading 
(Rayleigh) channels is proposed. This method allows the detection of PU signal even under low SNR conditions where 
average probabilities are measured under different channel gains. On analysis, it can be seen that numerical and 
simulation results shows better results of the proposed method over known energy detection with certain complexities 
under correlated noisy environments. 
Index Terms—Cognitive Radio, Spectrum Sensing, Locally Optimum Detection, Correlated noise samples  

------------------------------------------------------------------------------------------------
I . INTRODUCTION 
 
Electromagnetic spectrum consists of range of frequencies 
extending from low frequency radio waves to higher 
frequency gamma radiations. In that, Radio 
Frequency(RF) typically ranging from 3MHz-300GHz 
have innumerable applications especially in Wireless  
Communication, RADAR and Communication Satellites. 
Of all available spectrum in RF band only certain part 
have commercial uses which is mainly used in Wireless 
Communication. Thus the spectrum availability is limited 
and is a precious resource. Also it will not be feasible to 
increase the bandwidth with ever growing demands 
growing for spectral resource[1].This demand had paved 
opportunities to study under utilization of the spectrum 
assigned to Primary License holder who is referred to as 
Primary User(PU). 
Cognitive Radio (CR), also known as Intelligent Radio is 
the sensing device installed at SU end to detect the 
presence or absence of PU signal. Hence, CR’s have to 
regularly perform reliable radio scene analysis [2] to detect  
 
 

the presence of primary user signals with high detection 
and low false alarm probability as well as to know 
allowable RF noise limit in PU signal. This is mainly done 
to avoid interference from the SU to PU that allows 
opportunistic usage of the unused spectrum to SU’s for 
data transmission. For this dynamic spectrum sensing, we 
shall need to detect spectral spaces among various PUs 
licensed bands which is given in Fig.1 [3] 

 

 
 

Fig. 1 Spectral opportunity for secondary access: A 
spectrum space 

 
According to Federal Communications Commission, “A 
radio or system that senses its operational electromagnetic 
environment and can dynamically and autonomously 

  SPECTRAL 
SPACES 
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adjust its radio operating parameters to modify system 
operation, such as maximize throughput, mitigate 
interference, facilitate interoperability, access secondary 
markets”[4]. Henceforth, question arises when CR’s have 
to sense and detect the PU signal even under fading and 
shadowing problems which is inevitable. So, a number of 
methods proposed including matched filtering [5], energy 
detection [6], cyclo stationarity-based detection [7], [8]. 
This is summarized in the following classification 
provided in Fig2.  
 
Energy detection is the simplest method but it is 
optimized for disturbance with Additive White Gaussian 
Noise (AWGN) and only in high SNR values. Generally, 
we often consider the noise samples to be statistically 
independent. But in real practice, AWGN assumption 
does not hold good in some situations where the noise 
exhibits significant correlation in time domain. For this 
we require a cognitive radio environment that takes into 
account certain level of noise correlation. However 
studies on spectrum sensing reveals that prior knowledge 
of the PU signal is needed for detection in environments 
where noise samples are correlated [9]. 
 
In this paper, we propose a Local Optimum (LO) 
detection of random signals under weakly correlated noise 
models over fading channels being Rayleigh fading 
environment considered here. On investigation, we find 
that performance of LO detection measured using false 
alarm and detection probabilities is superior over existing 
energy detection methods with comparable complexities. 
Here we find that the probability values depend upon the 
channel gain ‘h’. For this purpose we need to derive 
theoretical average probabilities and for the validation of 
these results obtained we perform simulations showing 
good agreement. In case, the estimated correlation 
between noise samples is different from real correlation, 
we need to derive  average detection and false alarm 
probabilities for both estimated and actual correlations 
and study the effect of this mismatch in the performance 
of LO detector. 
 

 
 

Fig. 2 Classification of spectrum sensing techniques 
In the forthcoming modules let us discuss the following: 
1. System Model 

2. Energy detector structure through the approximations 
in different SNR regimes 

(i) False alarm probability 
(ii) Detection probability 

3. Locally optimum detector structure through the 
approximations in different SNR regimes 

(i) False alarm probability 
(ii) Detection probability 

 
II . SYSTEM MODEL 
 
Assuming there are two hypotheses, let H0 represents 
primary user being absent and H1 represents primary user 
being present, the received signal samples (n = 1, 2, . . ., 
N ) at the secondary user for these two hypotheses may be 
provided in equivalent complex baseband representation 
as: 
H0: xn = wn               (PU is absent)   (1)  
H1: xn = hsn + wn (PU is present)   (2)  
 
where, xn, h, and wn denote the received signal, the 
Rayleigh fading channel gain, and the noise samples at the 
secondary user and Sn is the PU signal. The channel gain 
“h” is assumed to be constant during the detection process 
with zero mean and the variance of E[h2] = σ 2

h . The PU 
signal has zero mean, variance σ2

s, and its real and 
imaginary parts are statistically independent and with both 
having variance (σ2

 s) /2.  The zero mean noise samples are 
assumed to have identical variance σ 2 n. Here PU samples 
are assumed to be independent over time, independent 
identically distributed (IID). Furthermore, we assume that 
the noise samples, the fading gains, and the PU signal are 
mutually independent to each other. 
In this paper, we assume the noise samples being 
correlated under time domain. For this purpose, we 
consider a weakly dependent environment using unilateral 
Moving Average of IID random variables. Assuming that 
ei with i=1,2,3,…N are the IID random variables with 
common probability density function (PDF) fe(;), the 
noise samples w1,w2,..wn in this case may be expressed as, 

w1=e1; w2=e2+ρe1    (3) 
wn=en+ρen-1         (4)  
where n=2,…N with | |<1,denotes the noise 

correlation co-efficient value. 
 

A. ENERGY DETECTOR 
 
 

 
Fig. 3 Block Diagram of Energy Detector 

 
Energy detection based sensing had been widely used due 
to its low cost and less computational complexity. The 
presence or absence of Primary Users signal is detected 
by pre-defining a known threshold limit. As shown in fig 
3 , here the received signal sample Xn   is initially passed 
through the Band Pass Filter (BPF) to limit the bandwidth 
to the interested value of frequency. Now the band-
limited signal is sent to square law device to squares the 
PU’s signal. Now the collected samples are summed and 
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then sent to threshold detector circuit. This performs the 
decision making depending upon the energy value of the 
summed samples. This decision is taken by, 

E > Ʈ, H1 (PU is present)   (5) 
E < Ʈ, H0 (PU is absent)   (6) 

Although the fact that the prior knowledge of PUs signals 
is not required in this spectrum sensing method makes it 
simple to implement, but it suffers from the following 
disadvantages: 
(i) Time required to sense and detects the spectrum 

availability. 
(ii) Poor performance under low SNR environment and 

in cases where the noise samples exhibit significant 
correlation. 

(iii)   ED cannot be used to detect spread spectrum signals 
[10]. 

 
1) PERFORMANCE OF ENERGY DETECTOR 
UNDER CORRELATED NOISE CONDITIONS 
 
Consider an energy detector (ED) used for detection in 
the presence of correlated noise samples, in order to 
compare its performance with the proposed LO detector. 
We plan to examine the advantage of the proposed local 
optimum detector in terms of performance compared to 
the conventional energy detection, based on following 
analytical expressions. The test statistic or the energy 
value for an energy detector can be expressed as follows. 
When the PU is absent then we obtain test statistic as, 
Λ=∑ | |2                                                           (7) 
	 =∑ | |2         (8) 
When the PU is present, then the test statistic obtained is, 
		 =∑ | + ℎ |2                  (9) 
We derive expressions for the false alarm probability and 
detection probability when this energy detector statistic is 
used under noise conditions that match our correlated 
noise model. 
From (8), 
	 =∑ | |2      

Similarly the expression of noise samples wi under 
correlated noise environments is expressed in equation 
(4), 								

=∑ | +ρ |2           												 

														= | |2+| +ρ |2+| +ρ |2+. . +| +ρ |2 

.Using Central Limit Theorem(CLT),we can prove that 
both and 	as asymptotically Gaussian random 
variable(RV) for large values of samples N,provided the 
RVs are far enough from each other in time domain and 
are nearly independent.[11]Now let us calculate both 
mean and variance of asymptotically Gaussian RVs 
	 and . For hypothesis H0,we obtain the 
following results, 

( ) = [N+ ( − 1) 
                                                                                                                          (10) 

( )= [N+(N-1)(4+ )ρ2] 

For hypothesis H1,we have, 

( )= [N
| |

+N(1+ ρ2)- ρ2] 
                                                                                          
(11) ( )=E[Λ2

|H1] - ( ) 
Using equations (10),(11),(38),(40),we can able to 
calculate the Pf(ed) and Pd(ed)for the provided channel gain 
“h”. 
Now,we will calculate the average detection probability 
and false alarm probability for the Energy Detector, 

( )=Eh Q  
Assuming low SNR region, 

( )=Eh[Q(∈ − |ℎ| )] 
where, 
 ∈ ( )=  and =N . 
Similarly, 

( )=Eh Q ∈ − |ℎ|  

 where,        =
( )

∈ + . 

B.  PROPOSED DETECTOR 
In this module, an locally optimum detector for spectrum 
sensing is proposed to achieve higher spectrum utilization 
in cognitive radio networks. The optimal detector 
structure for 
MPSK modulated primary signals with known order over 
AWGN channels is derived and its corresponding 
suboptimal detectors in both low and high SNR (Signal-
to-Noise Ratio) is also given. Through approximations, it 
is found that, in low SNR regime, for MPSK (M > 2) 
signals, the suboptimal detector is the energy detector, 
while for BPSK signals the suboptimal detector is the 
energy detection on the real part. In high SNR regime, it 
is shown that, for BPSK signals, the test statistic is the 
sum of signal magnitudes, but uses the real part of the 
phase-shifted signals as the input. We provide the 
performance analysis of the suboptimal detectors in terms 
of probabilities of detection and false alarm, and selection 
of detection threshold and number of samples.  
The simulations have shown that Bayesian detector has a 
performance similar to the energy detector in low SNR 
regime, but has better performance in high SNR regime in 
terms of spectrum utilization and secondary user’s 
throughput. We assume that the noise samples are 
temporally dependent. In simple first-order bilateral and 
unilateral moving averages (MAs) of an IID random 
process are used to model the weakly correlated noise. 
They are simple and good approximations to a weakly 
correlated noise. We consider a weakly dependent 
scenario using the unilateral MA of IID random variables. 
1) TEST STATISTIC: 
In order to derive a test statistic to recognize between two  
hypothesis H0 and H1, we start with the globally optimal 
(GO) decision statistic expressed as 

Λ=р(X/ H1) =Eh,s[	 (X-hS)]   (12) 
     р(X/ H0)          [ (X)] 

Where fW is the multivariate pdf of the noise samples and 
X = x1, . . . , xN, S = s1, . . . , sN. For the hypothesis H1, we 
have 
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				 (X-hS)= (x1-hS1,x2-hS2,…,xN-hSN)  (13) 
As the noise samples are not independent, the multivariate 
PDF cannot be expressed as multiplication of PDF of its 
elements.  
Using equation (3), 
w1=e1= x1-hs1     (14) 
w2= e2+ρe1=x2-hs2,    (15) 
i.e; e2=x2-hs2-ρ(x1-hs1)    (16) 
So,the generalized form is obtained as, 
wN=eN+ ρeN-1=xN-hsN ;    (17) 
eN=	∑ (−	ρ) ( − ℎ )   (18) 
Therefore, 

(x1-hS1,x2-hS2,…,xN-hSN) 
= fe(x1-hS1)*,..*	∑ (−	ρ) ( − ℎ )) 

               =fe(x1-hS1)*….*fe(∑ (−	ρ) ( − ℎ ))
 =	∏ ( -ℎ ).                                   (19) 
Where, yi=∑ (−	ρ) ( )    (20) 
and       ci=∑ (−	ρ) ( ).   (21) 
Similarly for hypothesis H0,      

(X)  = (x1,x2,x3,…xN) 
= fe(x1, x2-ρx1,….,∑ (−	ρ) ( ) 

              = fe(x1)*…*fe(∑ (−	ρ) ( ) 
 =	∏ ( ).    (22) 
Replacing the above equations of PDF’s (19) and (22) in 
(12), we get, 

Λ= 
р( )

р( )
 = Eh, s ∏ ( )

( )
                                (23) 

It is necessary to simplify furthermore the above 
expression where we use Taylor’s series of the joint PDF 
of the real and imaginary parts of a complex RV[12]. Let 
us consider R and I denote the real and imaginary parts of 
complex RV, we have, 
f(y-u) ≡ f(yR,yI) - uR f(yR,yI) - uI f(yR,yI) +  

1/2 uR
2 f(yR,yI) +1/2 uI

2 f(yR,yI)+ uRuI f(yR,yI) 
(24) 
Here ui=hci relating to PU signal has zero mean and has 
uncorrelated real and imaginary parts. Considering low 
SNR regime, the value of σ 2

h σ 2
s is almost zero and due 

to this ui also becomes zero. Hence the general 
approximation can be done as, 
∏ (1 + ) ≈ 1 +	∏ ( )  with i=1...M.   (25) 
This is done to approximate the (8), 

Λ=1+∑ , + ( )   

                                    (26)                                  
                            ( ) 
Using ci=∑ (−	ρ) ( ), we may simplify further by 
using the following calculation, 

E[ ]=E[	 ]= σ σ  ∑    (27) 
which results in following statistic, 

Λ=1+σ σ ∑ (∑ )	 + ( )  

           (28) 
( ) 

Now, let us consider Gaussian model for PDF fe, 

fe(y)=
√

( )    (29) 
Finding first and second derivative with respect to YR and 
YI, the most suitable LO test statistic may be obtained as,            
	 = ∑ (∑ )| |2

    (30) 
	 = ∑ | |2                                                      (31) 

2) FALSE ALARM AND DETECTION 
PROBABILITIES FOR LO DETECTION: 
For hypothesis H0, 

=∑ (∑ )|∑ (− ) |2  
  (32) 

where, ki=∑     (33) 
Hence, we obtain test statistic for H0 as, 
	 = ∑ | |2                                                  (34) 
Since ei’with i=1,…N and for large values of samples N, 
they are independent which allows us to use Central Limit 
theorem, and so 			  can be approximated as Gaussian 
RV with mean  and variance . 
The test statistic for H1 is given by, 
		 =ei+h∑ (− )                          
(35) 
Similar procedure shall be used to show as Gaussian 
RV with mean  and variance  . Using Gaussian 
parameters of each hypothesis, we shall represent the 
false alarm and detection probability as, 
Pf =Pr( 	>	 |H0)=Q     (36) 

Pd= Pr( 	>	 |H1)=Q     (37) 
where  denotes threshold. 
Here Q function is a monotonically decreasing function, 
and hence both false alarm and detection probability 
values increase and decrease at the same time. In order to 
have high detection values, we must tolerate higher false 
alarm values and hence it is important to keep false alarm 
probability value to be kept under limit given by two 
proposals, 
Pf ≤       (38) 
(i.e), 	 	≥ ( )+	     (39) 
For maximum detection probability, 
Pd-max=Q ( ) 	     (40) 
                      Pf ≤     (41) 
Similarly for the detection probability to be above specific 
value, we have, 
Pf-min=Q

( ) 	     (42) 
      Pd ≥                                                                 (43) 

3) PARAMETERS OF THE HYPOTHESES 
For hypothesis H0, The mean	  and variance 	

2 is given 
as,  

= ∑      (44) 

= ∑      (45) 

Similarly for hypothesis H1, 
= ∑ 1 + | | 	

   (46) 

The variance 2 is given by, 
 2=E[Λ2

|H1] -     (47) 
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From the above parameters, it is very clear that both the 
values of  and  does not depend on the channel gain 
“h”. But the expressions of  and   do depend on 
channel gain h”. Using these values in equations (38) and 
(43), helps us to determine the detection and false alarm 
probabilities for a specific gain “h”, when LO detection is 
done. 
4) AVERAGE FALSE ALARM AND DETECTION 
PROBABILITIES FOR LO DETECTION 
Incase to find average false alarm and detection 
probabilities, we use following expressions averaged over 
channel gain “h”, 

=Eh Q      (48) 
In low SNR regions, the expression for average detection 
probability becomes, 

=Eh[Q(∈ − |ℎ| )]    (49) 
where, 

∈ =  and = ∑ ( )2   (50) 
The average false alarm probability expression is given 
as, 

=Eh Q      (51) 

=Eh Q ( ) 	    (52) 
Therefore, 

=Eh Q ∈ − |ℎ|     (53) 
where,		∈ = ( ) and = ∈ + .  (54) 

III . SIMULATION RESULTS 
 
Considering a fading channel with weakly correlated 
noise and N = 500 samples have been collected at the 
secondary user end. In this simulation, we assume a slow 
fading channel where the fading coefficient h is constant 
during the sampling period. Initially, we fix the detection 
probability to 0.95 and find the average false alarm 
probabilities at different signal to noise ratios (SNRs, 
defined as SNR = σ2

hσ2
s /σ2

n ) for both cases of our 
proposed locally optimum detector as well as the existing 
energy detector. In order to verify our theoretical analysis, 
we also find the average false alarm probability using 
simulations over 100,000 independent realizations of the 
Rayleigh fading channel and compare with analytical 
results. The average false alarm probability for correlation 
coefficient ρ = 0.5 is shown in Figure 4. We use an 8-PSK 
modulation for the PU.  

 

Fig.4 Average false alarm probabilities using 
theoretical and simulation results for detection probability 

of 0.95 and = 0.5	at different SNRs. 
 

Table 1 False alarm probability figures at different SNRs 
 

SNR (dB) LO Detector Energy Detector 
-30 0.9679 0.9754 
-25 0.9105 0.9641 
-20 0.8343 0.9432 
-15 0.7320 0.9018 
-10 0.5926 0.8140 
-5 0.4001 0.6131 
0 0.1297 0.1132 

 
Table 2. Detection probability figures at different SNRs 

SNR (dB) LO Detector Energy Detector 
-30 0.0800 0.0800 
-28 0.0803 0.0800 
-26 0.0819 0.0806 
-24 0.0874 0.0834 
-22 0.1007 0.0918 
-20 0.1265 0.1104 
-18 0.1685 0.1438 
-16 0.2286 0.1952 
-14 0.3061 0.2653 
-12 0.3975 0.3520 
-10 0.4976 0.4505 
-8 0.6000 0.5546 
-6 0.6988 0.6575 
-4 0.7887 0.7534 
-2 0.8662 0.8377 
0 0.9296 0.9078 

As it can be seen from Figure 4, our locally optimum 
detector has lower false alarm probability compared to the 
energy detector. Also, the simulation results almost match 
the analytical results with very small errors which will 
verify the validity of our analysis. In the following case, 
we fix the false alarm probability to 0.05 and find the 
average detection probabilities at different signal to noise 
ratios (SNRs). 

 
Fig. 5 Average detection probabilities using theoretical as 

well as simulation results for false alarm probability of 
0.05 and = 0.5 
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As it can be seen from Figure 5, the proposed detector has 
higher detection probability compared to the energy 
detector. Similarly, the simulation results are very close to 
the analytical results.It is also important to take into 
account the effect of the number of samples on the 
performance of detection. Both energy detection and the 
proposed LO detection is considered with different 
correlations. The average false alarm and detection 
probabilities are shown in Figures 6 and 7 respectively. 

 

 
Fig. 6 Average false alarm probabilities Vs the number of 

samples for the detection probability of 0.95 
 

As expected, increasing the number of samples results in 
lower false alarm and higher detection probabilities. For 
all curves shown in simulation, the rate of decreasing 
Pf(increasing Pd) is higher at the beginning (lower 
samples) and it decreases when the number of samples 
gets higher. For each correlation, the proposed LO 
detection is better than the energy detection for all values 
of N. The higher the correlation the more the difference 
between Pf values of both methods. This can be proved 
using Fig.6 and 7 for the given value of correlation co-
efficient = 0.9	and = 0.3	. Also, for each curve, 
simulation results have also been provided and as it can 
be seen they match the theoretical results with very small 
errors, thus validating the assumption made in the 
theoretical derivations. 

 

 
Fig. 7 Average detection probabilities Vs the number of 

samples for false alarm probability of 0.05 

IV . CONCLUSION 
 
Hence signal detection in Cognitive Radio over fading 
channels using Locally Optimum Detection under weakly 
correlated noise models had been proposed. This is done 
through the calculation of false alarm and detection 
probabilities for specific channel gain “h” and averaged 
under different channel gains. In order to compare the 
superiority of proposed LO detector over traditional 

energy detector, we have analyzed it’s performance under 
the same correlated noise model. Through our 
simulations, we can conclude that LO detection technique 
gives lower false alarm probability and higher detection 
probability value compared to energy detection method 
under low SNR conditions. It can be inferred that the 
detection probability values in turn increases with the 
increasing channel gain “h”. However, in this paper we 
did not take into account the effect of correlation 
mismatch on the probability values, which needs to be 
addressed. 
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